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16.ADettact

Ultra high speed tractiontestswere performed on two tractionfluids

commonly employ2d. Traction data on these fluidsisrequired for purposes of action

drive design optimizationtechniques. To obtain the tractiondata, an existing _win disc I
tractiontestmachine was employed. This machine was modified to accommodate the

£ range of testvariables. All the data reported was obtained under conditionsof side
slip,a technique whereby only low power levelsare required to simulate real traction '
dri,__.contacts.

The range of the testsvariableswere; contact pressure from I to 1.8 GPa, disc surface

velocityfrom 50 to 120 m/sec, fluidinlettemperature from 50 to 120 °C , contact spin

from 0 to 1.5% and inletfluidsupply from fullyflooded to fullystarved. The resulting
tractioncurves were reduced to three constantsby using the Johnson and Tevaarwerk£
isothermal tractionmodel coupled to a thermal correction technique for large slipand
spin results. Theoreticaltractionpredictionswere performed for a :'epresentative

number of curves that showed the influenceof rollingvelocity,of contact pressure and of
aspect ratio. To establishthe accuracy of the thermal model the predictionswere

per'ormed with increasinglevelsof independence of experimentally determined parameters.

In the finalresultingpredictiononly two non linearthermal parameters were used for the
C prediction of 15 different traction curves covering the entire range of variables as used

in the investigation, with .the exception of the influence of asperity traction.
Comparison of these theoretical curves and corresponding experimental traces show very
good agreement.
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SUMMARY

Ultra high speed tractiontests were performed on two tractionflu_.dscommonly

employed. Traction data on these fluidsis required for purposes of tractiondrive

designoptimization techniques. These tecimiques willallow for the best possible

design ot a given drive configuration. For adequate test data the entirerange of

operating conditionsof the drivesshould be covered by the tractiontest program and

' th'_sincludesconditionsof large slipand possibleinfluencesof fluidstarvation.

To obtainthe tractiondata, an existingtwin disc tractiontest machine was

employed. This machine was modified to accommodate the range of testvariables. All

the data reported was obtained under conditionsof side slip,a technique whereby

only low power levelsare required to simulate realtractiondrive contacts.

The range of the testsvariableswere: contact pressure from 1 to 1.8 GPa, disc '

surface velocityfrom 50 to 120 m/sec, fluidinlettemperature from 50 to 120 °C ,

contact spin from 0 to 1.5% and inletfluidsupply from fullyflooded to fully

starved. The resultingtractioncurves were reduced to three constsnts by using the

Johnson and Tevaarwerk isothermal tractionmodel coupled to a thermal correction

technique for large slipand spin results, q'hethree constantsare the elasticshear

modulus and two non linearthermal parameters.

Theoreticaltractionpredictionswere performed for a representativenumber of

curves that showed the influenceof rollingvelocity,of contact pressure and of

aspect ratio. To establishthe accuracy of the thermal model the predictionswere

performed with increasinglevelsof independence of experimentally determined

parameters. In the finalresultingpredictiononly two non linearthermal parameters

were used for the predictionof 15 differenttractioncurves covering the entire

range of variablesas used in the investigation,with the exception of the influence

of asperitytraction. Comparison of these theoreticalcurves and corresponding

experimental traces show very good agreement.

The influenceof asperity tractionwas extracted from the experimental curves with

starvationby predictingthe tractionunder fullyflooded conditionsand using the

differenceto predict the asperitytractionas a function of the number of asperities

in contact. Itwas found that the amount of tractionforce per asperityin contact

was pretty well independent of the tractioncontact conditionsand also of the

tractionfluid. Comparison between theoreticallypredicted tractioncurves including

the effect of asperitytractionand experimental curves shows reasonable agreement.

L:
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NOIV,ENCLEATURE.

Below followsa listof the varioussymbolsused inthe textand theirunits,

Sym. DESCRIPTION Units

a,b Semi Hertziancontactsizein the x and y direction im]

A Fluidviscositytemperatureparameter [°C]

B Fluidviscositypressureparameter [°C/Pal

; Cs Specificheat of the discmaterial [J/kg.°C]
C Shearstresstemperatureparameter for thermalmodel [°C/I=a]

Cf Contact fractionforasperities [-]
_, C' Elasticallystrainedfractionof contact [-]

D Solidificationtemperaturefor the fluid [°C] I
De Deborah number [-]

e Curvatureoffsetfrom the rollingaxis [mm]

E Viscosityconstantfornon linearthermal model [Pa.sec]
(

E' Composite elasticmodulusfor the discmaterial [Pal

F(@ Dissipativefunctionfortractionmodel [see-l]

Fx Contact forceinthe x direction [N]

Fy Contact forceinthe y direction [N]
F z Normal force on the contact [N] i(

f Number of asperities in contact [-] !
G Fluid shear modulus (uncorrected) [Pal

Gc Compliance corrected fluid shear modulus (simple) [Pal !
Gj Fully corrected fluid shear modulus [Pal
Ge Johnson Elasticity parameter [-]

Gs Shear modulus of the disc material [Pal
h Central film thickness in contact [m]

J1 Dimensionless longitudinal slip variable [-]
J2 Dimensionless side slip variable [-] i

J3 Dimensionless spin variable [-]t"

J4 Dimensionless longitudinal traction variable [-]

J4 e Elastic stress portl,,n of J4 [-]

i J4p Plastic stress portion of J4 [-]
J4 t Thermal dimensionless longitudinal traction [-]

C J5 Dimensionless side slip traction variable [-]
J6 Dimensionless spin torque variable [-]

k Contact aspect ratio (b/a) [-]

kf Thermal conductivity of fluid [N/see °C]

ks Thermal conductivity of disc material [N/see °C]

O K Calibration constant in side slip measurement [m] :
m Initial slope of the zero spin traction curve [-]
mt Traction slope for dry discs [--]
P Pressure [Pal
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Po Hertzian contact pressure [Pa]

Pe Psuedo Pec{et number [-]

Pr Reduced Hertz pressure fraction [-]

'" Q Kalker coefficient [-]{

q Thermal heat flux due to traction [N/m sec]

Rx Equivalent radiusof curvature in x direction [m]

Ky Equivalent radiusof curvature in y direction [m]

Re Equivalent radiusof curvature for discs [-]

S Au,':.{liaryvariableused in elastic/plasticmodel [-]

t time [sec]

U Rollingspeed of the discs [m/sec]

VF Voltage fractionfor asperities [-]

.i V0 Viscosityparameter [Pa.sec]
,|

',_ AV Side slipvelocityof the discs [m/sec]
J

" AU Longitudinalslipvelocityof the discs [m/sec]

_ Ax Small displacement of the displacement transducer [m]

YI Inletshear heating factor [-]

j GREEK SYMBOLS.

& Angle of tiltof the toroidalaxis [rad]

_(0) Pressure viscosity coefficient [1/Pal

6 Side slipangle [rad]I

_I' co Angular spin velocityon the contact [rad/sec]

,_ _) Temperature of the fluid [°C].{

I _c Shearplane temperature [_C]
i 0o Inlettemperature [°C]

I T Shear stress [Pal

! Zs Non linear stress parameter for hyperbolic sine [Pal

-{ Tc Limiting strength of fluid at shear plane temperature [Pal
i TO Limiting strength of fluidat inlettemperature [Pal

•I ¢( Shear strainrate (V/h) [I/sec]

t n Viscosity [Pa.sec]
[

U Traction coef. Fx/F z or Fy/F z [-]

Peak traction coefficient [-]

Os Density of the disc material [kg/m °3]

_ X Hertzian contact shape parameters [-]

{C

m
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I-0 INTRODUCTION

Traction or frictionplays a major rolein today'stechnologicalsocietyin that it

holds one of the keys to reduce our overallenergy consumption, and thereby the

dependencc on unrelieblesources of thisenergv. Frictionand tractionindicate the

resistanceto relativemotion of two 'contacting'bodies.The term tractionand

frictionhave the same meaning in a tribolo_icalsense,however frictionis used when

thisresistanceis undesirable8nd tractionisused when itis desirable.

The mechanical components in which frictionand tractionare important are rolling

element bearings,gears,cam and tappets Bn(1tractiondrives.Because these devices

almost always operate in a wet or fluidlubricatedenvironment, the traction or

frictionis mostly governed by the particularfluidthat isused. In the firstthree

devices frictionis the key source of inefficiencyand because of the multl_ude of

bearings and gears in service,a small reductionin these lossescan amount to

phenomenal savings in energy. Rollingelement bearings actuallyhave rather

! interestingrequirement for frictionor tractionin that at low to medium speeds

frictionshould be low, Lut at high speeds *.ractionshould be high to ensure that the

" rollingelements operate at the correct velocities.

Traction driveson the other hand rely on the transmittalof tractiveforces for

power transmissionpurposes and they require high fluidtractionat all times. With

variablespeed tractiondrivesit ispossibleto allow prime nloversto operate at

their most efficientpower point,almost independent of the load requirements. Itis

oy these means that tractiondrivescan indirectlybe looked upon as potentialenergy

savers.Fuel consumption reductionsof 25 to 40 % are believed possiblewith the use

• of variablespeed tracUon drivesin automobiles. This report addresses itselfto

• the phenomen_ of tractionand isaimed at providingfluidtractiondata for two

: fluids operating under widely varying conditions, with particular emphasis on
traction drives.

- 1
I-I TRACTION DRIVE TECHNOLOGY.

Traction driveshave been in existence for a long period of time. They are simDle

c, in concept and relatively easy to manufacture. Howevec successful traction drives are

few and the reason for this is that while simple in concept, the analytical tools

required to develoo a drive in direct competition with other transmissions have been

sadly lacking in the past. This is rapidly being remedied however with recent

developments and interest in this area of design. An excellent review article dealing

C with the historical aspects of traction drives and the related technology is

presented by Loewen'.hal [1].

t In simple terms the traction drives basic elements are two rogers, pressed into

nominal contact, rolled about their respective axis and power is transmitted in the

form of a shear stress acrou the contact area. A fluid is present to prevent

• 0 initial surface scuffing d_mage and to provide for some form of cooling. The rolling :
motion of the discs draws this fluid Into the contact zone and a thin layer of this
fluid wig seperate the actual contact area. It is also in this region where the

torque is transmitted from one roller to the next and it should not surprise one that

the performance of a traction drive depends to a large extent upon the theological
(_ ..
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propertiesof the fluid. Close exam!nation of the fluidhistoryas itpa_e_ thrnu_h

the contact gap revealsthat itexperiences a sudden pressure pulse from atmospheric

"_, to possiblyseveral Giga Pascal in a time period of I to .l m/sac. The shear stress

that is transmittedfrom one disc to the other (about I0% of the normal stress)

passes th;'ougbthislayer of fluid"trapped" in the contact and causes a shear. This

in turn willlead to heat generation and from simple calculations,temperatures in

the center of the film can easilyreach several hundred degrees Centi_;:ade.

To study the theologicalpropertiesof the fluidunder these conditionsprecludes

ti,euse of most of the conventional instruments used for steady state measurements.

In fact the only suitabletype of instrument for the study is a disc machine where

most of the cor,ditionsare the same or simL "to those in tractiondrives. From the

resultingtractiontests,certain moc'elsare inferredand it nsin thisarea where

there has been a lot of activityrecently. 'l

, To the designer of tractiondrives,the tractionbehaviour of the fluidunder the

i severe conditionsis of utmost importance because of the directinfluencethat ithasl

:] on the efficiency,size and lifeof a given drive. Besides a good rheologicalmodel

.i fox"the fluid,he must have at his disposalpertinentrheolog.calpropertiesof the

fluidthat he propose_ to use.

I-2 PRIOR TRACTION INVESTIGATIOI_S

As mentioned in the introduction,there has been a let of activityin the area of '
i

tractionresearch,both in the past and recently. Notable contributionshave come

from Clark et al [2],Hewko [3],Smith [4],Smith et al [5],Johnson and Cameron [6],

- Niemann and Stoessel[7],and more recently Johnson and Roberts [8]and Johnson and I
Tevaarwerk [9]. Some of these investigationswere strictlyexperimental in nature,

and _med at obtainingtractiondrive design dat_. while others were aimed at

understanding the tractionphenomena so that theologicalmodels could be formulated.

This latter research is of course ultimately aimed at relating fluid molecular _'

propertiesto tractionproperties. Research by Johnson and Tevaarwerk [9],Daniels

[10], Hirst and Moore [!1] and Alsaad et al [12] is directed specificaliy towards

this purpose. The reader is referred to an excellent review by Johnson [13] for

further aspects of this topic.

Many of the rheological models derived so far have been isothermal in nature.

This is not so much due to the level of understanding of traction but rather because

of the degree cf complexity _hat thermal analysis !ntroduces. This is not to say

however that thermlfl effects are not important, a simple method is required however i

,L to include them in the _nalysis.

Current understanding of traction has led to t;-sction models that describe the

fluid shear behaviom" in terms of an elastic and a dissipative element, For purposes

of mathematical tractability this dissipative element is taken to be plastic like in

nature. This gives an adequate description of the fluid behaviour at conditions such
C, as those encountered in traction drlve._. An analysis of tr0_ction drive performance ,

• using such a model was done by Tevaarwerk [14]. It showed that under certain
• conditions the pretlictlon technique by Magi [15] can be used, This work has now been

further expanded by developing a simple method to correct for thermal effects due to ,'

[e
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L_

} spin,Tevaarwerk [16],and an overallthermal tractionstudy,Tevaarwerk [17].

As with allmodels however, theirusefulnessisseverely restrictedifinadequate

_} input tractiondata isavailableto the designer. This isespeciallyso if new high

tractionfluidsare used that were not tested previouslyfor use under conditions

that existin modern highlyadvanced tractiondrives.

: 1-2 TRACTION DATA RESEARCH PROGRAM
i

Several novel and new forms of tractiondriveshave recently been developed and

, testedby Loewenthal et al [18]and Kemper [19] arA McCoin et al.[20].For purposes

of design of these drives,adequate fluidtheologicaldata isneeded under the

ooeratingspeeds, pressuresand temperatures encountered. Besides the above it is

desirableto investigatethe influenceof contact area, aspect ratio,spin and side

< slipon the tractionbehaviour. Additionally,the data could be testedagainst _n

4 existingtractionmodel to investigatehow well itpredicts the observed traction.
i_ The firstpart of thisinvestigationconcerned itselfwith the isothermal aspect of

tractionand the resultsare reported in Tevaarwerk [21],tilesecond pert of this

;i investigation,reported here, covers the thermal aspects of tractionand the

i} influenceof asperitycontact. This work was performed by Transmission Research

4 Incorporatedof Cleveland Ohio under contract to the NASA Lewis Research Center,

<I Cleveland, Ohio. The NASA technicalproject manager was Mr. D. A. P _hn from the
i

L, Bearing,Gearing _nd Transmission Section at the NASA Lewis Research Center. {

i I
. i

l
?
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2-0 EXPERIMENTS

The varioustractionexperiments were carried out on an existingtwin disc test

facility,shown in figure2-], 2-2 and 2-3. This test facilitywas modified such

that itwould be capable of traction measurements for speeds up to 120 m/sac, and

facilitieswere provided for the asperitycontact measurement and fluidstarvation.

Traction curves were obtained by using the _ide sliptechnique;a technique whereby

large tractiontransfercan be measured without the need for a large motor generator

set.

2-I DESCRIPTION OF TWIN DISC MACHINE.

For an extensive descriptionof twin disc tractiontestersthe reader is referred

to the literature;Smith [4]and Johnson and Roberts [8]. Basicallythe machine

consistsof two discs,calledthe uppe_ and lower disc. The lower disc is mounted in

. rollingelement bearings through shaftsand the only degree of freedom isone of

rotationabout thisaxis. The lower discalways has a transverse radiusof curvature

•_ of infinitv.To avoid problems with gravity forces the axis of rotationof thisdisc

_:i should b_.horizontalto within a few milliradians.The upper disc iscontained in

' bearings that are mounted in the upper assembly. This upper assembly is suspended

., with elastichingessuch that only directnormal motion or axial motion ispossible.

The assembly willhowever always stay horizontal. The upper disc (or toroid)has

: curvatures so that the desired contact geometry is arrived at. The upper assembly is

constructed such that the toroidal axis can be tilted relative to the horizontal

plane so as to introduce spin on the contact. It can also be skewed about the normal

to the contact to introduce a side slip velocity.

In order to achieve the various aspect ratios a number of special discs with

varying crown curvatures were employed. These discs were made of AISI-01 steel,

hardened to 7.00 GPa, ground and polishedtca surface finishof lessthan .05_m RMS [,;

and with an out of roundness error of lessthan 5/urn. Between teststhe discs were

: inspected for surface damage and if needed, reground and polished to bring them back

up to specifications. The required normal load, obtained by a dead loading

technique, can be calculated from the Hertz theory for elastic bodies in contact.

The maximum contact normal stressPo isgiven by;

(2-1) Po =

where Fz= contact normal load IN]

Po = Hertzian contact stress [Pal

E'- ca_posite elastic modulus [Pal ;(231 GPa for steel)

Re= equivalent disc radius [m]

o = (I/Rx+ Imy)-I '
. ¢,X = Hertzian contact shape factors i-]

@

|',
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: The variouscurvatures Rx and Ry as employed in thisinvestigationare
reported for each testin Appendix I-A . The Hertzian shape factorsmay be foL,nd in

any good book on contact mechanics.

2-2 INSTRUMENTATION OF THE TRACTION TESTER.

By suitablyinslrumenting the disc machine the relevant experimental parameters can

be measured. In the experiments reported here the sideslip_sideways tractionforce,

toroidsurface temperature, rollingvelocityand the degree of aspe._itycontact were

measured. The technique of measuring each of these variableswillbe discussednext.

2-2-I THE MEASUREMENT OF THE TRACTION FORCE.

A ringdynamometer type load cellwas used to measure the side slipforce of the

upper toroidassembly. It was found necessary that thisload cellwas thermally

isolatedfrom the machine because temperature variationstended to introduce drift

into the signal. Also the active gauges had to be protected from the splashinghot

test fluidas thisgave riseto noise on the signal. The electricalsignalfrom the

load cellwas conditionedfor noise and amplified using common mode rejection

techniques. The gain on the amplifierwas adjusted _o that a good range on the

signalwas measured for each test. Calibrationof the load cellwas done in situby

dead loading. This calibrationwas checked periodicallybut never was there any need

for recalibration.

2-2-2 THE MEASUREMENT OF SIDE SLIP.

The skew angle was measured by using a directcurrent displacement transducer on the

upper assembly and thereby measuring the rotationangle of thisassembly. This skew

angle gives the amount of side slip/rollratio through the relationship;

(2-2) AV/U= tan (_)

where _ = side slip angle [rad]

&V = side slip velocity _m/sec]

U = rolling velocity [m/sec]

By measuring the _mount of skew with the displacement transducer the side

slip/roll ratio is obtained directly through;

C_ (2-3) AV/UffiK &x

where _lx is the displacement of the transducer and K a scale factor. The electrical

output of the displacement transducer was filtered in an R-C network to provide a

low-pass signal The maximum frequency response of the R-C network was .1 sec. The

C) displacement transducer was calibrated by rotating the upper assembly through a known

angle and then calculating the amount of side slip for this angle.

i

m

1985017537-016



Page 6

2-2-3 THE MEASUREMENT OF THE TOROID SURFACE TEMPERATURF.

In the analysisand rcductionof the testdata itisimportantthatthe disc

temperaturebe used as the referenceinlettemperatureforthe filmthickness.This

temperaturecan be measured by embedding a thermocoupledirectlybelow the surfaceof

the toroidand then to take thissignalout throughmercury sliprings,This method

ishowever not very practicalwhen a number of differenttoroidsare involvedand is

alsovery costlyfrom an installationpointof view. With care the surface

temperaturecan alsobe measured by usinga trailingthermocouplethatrideson the

discsurface.The disadvantageof thistechniqueisthatitcan be speed sensitive

in itsresponsebecauseof frictionalheating.

The lattertechniquewas employed here and care was takento ensurethatthe

contactforceon the thermocouplewas not excessive.A referenceicebath junction

ensuresthatthe same referencelevelforthe thermocoupleisusedat alltimes. The

signalfrom the thevmocoupleisamplifiedusingcommon mode rejectiontechniquesto
minimizethe influenceof electricalnoiseand otherdisturbances.Calibrationwas

done by the boilingwater method adjus*edforsea leveldifferences.This

c_ibrationwas checked periodically.Only slightdeviationswere encountered.

Because of the frictionalheatingat thejunction/toroidinterfacea variationof

about 2 °C was foundinthe signalbetween stationarydiscsand thoserotatingat a

surfacevelocityof ]20 m/s. The overallreproducibilityof the temperature
measurement isbetterthan 2°C.

( The temperatureon the machine was regulatedthroughthe use of heatersand

coolerson the testfluid.Thistestfluidwould be allowedto circulatefreely

beforethestartof a testseriesin orderto bringthe machine up to a uniform

temperature.No specificeffortwas made however to maintaina givenset point

temperatureduringthe testand the reasonforthiswillbecome clearin the analysis i

of the results, i
I

2-2-4 MEASUREMENT OF THE DISC SPEED. ,_
The rotationalvelocityof the bottom discwas measured indirectlythroughthe use t

of a tachometeron the drivemotor. Knowledge of the gear ratiosand the disc

, diameterpermittedthe calculationof the surfacevelocityof the disc.The !
}

electricalsignalfrom the tachometerwas scaledby usinga dividercircuitand f

filteredby usinga low passR-C filterwith a 2 sac time constant.Thismethod of j

velocitymeasurement isoftenused to giveboth magnitudeand directionindication, i
Calibrationof the system was performedon a periodicbasisand some major problems i

withthe testingstemmed from thissource. Initiallythe tachometerwas directly 1
t_

coupledto the motor shaft.Thiswas a simplesolutionbut may have caused some of

the problemswith thissystem. About halfway throughthe testseriesthe tachometer

drivewas changedto an indirectsystem with a rubberbeltto isolateitfrom the

motor vibrations. No further problems were experienced after that point.
0

2-2-5 CONTACT RATIO MEASUREMENT.

Inorderto measure the degree of asperitycontactthattookplaceat any one

time an electricalconductancecircuitas shown below was employed.

i

1985017537-017



f

i

'1 " Page 7

The selection of the various electrical components is such that only very

low voltages are applied across the two discs to minimize the risk of surface damage

through arcing. The output signal of network was essentially DC in nature with only

slow fluctuations in the contact conditions being recorded. The signal from this

circuit will be used in Chapter 6 to analyze the amount of asperity traction that is
added to the fluid traction.

IK 2K

VDC

• ,, 1I

Schematic of the contact ratio measuring circuit.
=I

._ 2-3 TRACTION MEASUREMENTS.

!] T,action curves were obtained by the slow rotationof the upper assembly from a

i positivevalue of side slip/rollratioto a negative value. The signalsfrom the

i

above discussedtransducerswere fed into a digitizerfrom where they were led into

i an Apple II+computer for plottingand storage on magnetic media for future use. The
*] ,

i computer would automaticaUy trace the force versus slipcurve on the screen. By
reversingthe directionof rotation of the machine, a duplicateset of curves can be

Li obtained. For each experiment 500 data pointswere taken at fixed time periodsof .2seconds. Multiple data data pointswould be stored as separate entries.

I After the completion of a testseriesthe data would be recalledinto memory of the

; computer and further manipulated. This manipulation consisted of the averaging of

._ the mult_ ie entries, the filling in of any gaps in the data through forward and

backward interpolation,the comparison of the traces for the forward and reverse

rolling direction and the centering o¢ *he traces about the center lines. After the

! centering operation the data would be smoothed by a 'N' point averaging technique for
, traction points after the peak traction points. For storage a geometric series was

used so that the total traction trace was now represented by 40 data points for each

measured ',ar_aole. These traces were then stored on magnetic media and used for

ft_rther ma, pulation and data extraction at a later point

C 2-3-i TYPICAL TRACTION TRACES.

In tots/ close to 400 traction curves were taken and it is not practical to

reproduce every one of them here. A summary of all the traction traces is shown in

Appendix I.

To show the trend that certain variables have on traction a number of typicalO
curves were selected. Of the controlled variables it is important to show the

vaHat!on of traction with speed,pressure and aspect ratio. The variation of

;_J,perature wiU be dealt with at a later stage. The selected traces are indicated

O

q
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in tabularform below.

TDF-88 SAN[O-50

Speed [m/_ec] Flooded Starved Flooded Starved

50 820804-7 820804-8 820924-7 820924-8

80 820804-9 820804-i0 820924-9 820924-10

120 820804-11 820804-12 820924-II 820924-12

TABLE 2:1 Traces selected to show the influenceof speed on traction.

Aspect ratiok=2 and the Hertz contact pressure Po-l.2 GPa.

The above indicatedtracesare shown in Figures 2-4 to 2-7 in the grouping as

indicated.

.

Po k ._ TDF-88 _ SANTO-50
[GPa] [-] Flooded Starved Flooded Starved

-1.0 5.6 820916-3 820916-4 820923-9 820923-10 '

1.2 5.0 821116-9 821116-10 821102-10 821102-9

1.4 2.0 820805-3 820805-4 820924-15 820924-16

1.6 1.0 820824-3 820824-4 821019-9 ' 821019-10 i
1.8 1.0 820824-9 820824-10 821019-16 821019-15

|

TABLE 2:2 Traces selected to show the influenceof pressure on traction, j

The rolling velocity is kept constant at approximately 80 m/sec. These traction !

traces are shown in Figures 2-8 to 2-11 in the groupings as indicated.

Aspect ratio k_ TDF-88 . SANID-50

(-) Flooded Starved Flooded starved

1.0 820824-15 820824-16 821019-3 821019-4

2.0 820805-3 820805-4 820924-15 820924-16

5.0 821116-I 5 821116-16 821102-18 821102-17

TABLE 2.3 Selected tractiontraces to show the influenceof contact

aspect ratio.
I

Hertzian contact pressure is Po=l.4 GPa and the rolling velocity is 80 m/sec.

These traces are shown in figures2-12 through to 2-15 for the groupings as

indicated.

1985017537-019
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2-4 THE APPLICATION OF SPIN.(

Spin may be introduced on the contact by tilting the upper assembly through an

angle a. This angle a is referred to as the spin angle, however it is not a direct

measure of the spin itself. A suitable measure of spin is given by the variable J3,
see Tevaarwerk[14].

(2-5) J3 = 3_ m _/_v_k
8 _ U

where; m = initial tractionslope [-]
= peak tractioncoefficient [-]

= spin velocity on contact [rad/sec]

k = aspect ratio b/a [-]

U = contact rolling velocity [m/sec]

a,b = contact dimensions [m]

Most of the variablesinequation(2-5)are known eitherfrom the tractioncurves

or elsefrom thecontactgeometry. The group_v_-'6/Uprovidesfora measure of the

spinintensityon the contactand itwillbe usedhere to indicatespinas such. The

angularspinvelocityon the contactcan be relatedto the angleof tiltthroughthe

( following:

sin
(2-6) u/U=

(Rycos.* e)

( where a = spin angle [tad]
= center of curvature offset [m]

(

c .I I
O Figure2-3:Generaldiscarrangementforspintests.

LN
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In some instancesthe distance e has a negative value i.e. the center of

Ry isabove the axis of rotationas shown in figure2-3. Equation (2-6)still

appliesprovided that the sign of the distance e istaken intoaccount. The value of

'e'is listedin Appendix I-A together with the v_Ides for Rx and Ry.

Because of the computer listingthe notation differsslightlyfrom that in t',etext.

Rx becomes RX and Ry becomes RY. When the toroidsare tilted,a slight

change takes place in their rollingcurvature. This was kept small however by the

proper selectionof the radii. A simple correction can be made for thisradius

change through the followingexpression;

(2-7) R X = Ry + e/cos

In most cases thiscorrectiondoes not amount to very much.

Traction curves with imposed spin were obtained in the same manner as described

for the zero spin tractioncurves. Typical curves obtained are shown in figure 2-16

to 2-17 for a varietyof spin conditions. A broad selectionof curves was made to

show the influenceof spin on the traces. Below isa Table indicatingthe degree of

spin in each test shown in Fig. 2-16 and 17.

TDF-88 SANTO-50

Test number _0/'a'6/U[%] Test number _,/a6/U [%]

820825-3 .294 820923-3 .605

" 820825-9 .336 820927-10 .400

820825-15 .370 820927-15 .474

820902-6 .400 821022-9 .336

820916-9 .631 821022-4 .294

821118-15 i.II 821101-18 I.II
I-

TABLE 2:4 Selected tractiontraces to show the influenceof spin .:

on traction.

r A significant feature of traction tests with spin is that at the cross over point for

side slip there is a finite amount of traction left as shown in the experimental

data. This is not some kind of experimental problem but results from the elastic

response of the fluid to small strain. In the spin traction curves the vertical

axis give the 'average traction stress' rather than the usual traction coefficient.

This average traction stress is related to the traction coefficient through the mean

contact pressure as;

(2-8) T = _ P where;

O Y = average traction stress [Pa]
I_ = traction coefficient [-]

and ]5'= mean contact pressure [Pa]

)
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3-0 THEORETICAL ANALYSIS

In order to understand the requiredanalysisof the experimental data it willbe

helpfulto considerthe followingdiscussionof traction. The abilityof a fluid

film,trapped under high pressurein the elasticallydeformed region of two loaded

i curved elements, to transmit a tangentialforce from one element to the other,is

} commonly referred to as frlctionor traction. The magnitude of thisforce depends on
Z

severalvariablessuch as :l)the contact kinematic conditionsof slip,spin and

I sideslip, 2)the fluid present, 3) temperature, pressure and operating speeds. We

i will first examine the traction behaviour under simple slip only.
i Under conditionsof increasingslipbetween the two elements an increasingi

tractionforce is transmittedup to a certainlimitat which point itwilldecrease

with furtherslip. See Fig.3-I

R£OION

z A/:

f Q: RE_IOI

SLIDE ROLL RATIO, _U/U
Fig. 3-1 Typical traction /slip curve.

There are three regions identified on this traction curve and the behaviour

' in each of these regionscan best be described by the Deborah number. For a simple

Maxwell viscoelasticmodel thisnumber isthe ratioof the relaxationtime and the

mean transittime, see Johnson and Tevaarwerk [9].

(A) The linearlow slipregion. Thought to be isothermal in nature,itiscaused

by the shearing of a linearviscous fluid(low De) or that of a linearelasticsolid

' (highDe).

(B)The nonlinearregion. Stillisothermal in nature but now the viscouselement

responds nonlinearly.At low De thisportionof the tractioncurve can be described

by a suitablenonlinearviscousfunctionalone,while at high De a linearelastic

element interactswith the nonlinearviscouselement.

'C (C) At yet higher valuesof slipthe tractiondecreases with increasingslipand

itis no longerpossibleto ignorethe dissipativeshearingand the heat that it

_enerates in the film. Johnson and Cameron [6] showed that the shear plane

hypothesis advanced by Smith [4] does account for most of their experimenta.1

observationsin thisregion. More recentlyConry et al [22]have shown that a

O nonlinearviscouselement together with a simple thermal correctioncan alsodescribe

this region.

1985017537-022
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) 3-1 ISOTHERMAL TRACTION ANALYSIS.

The rheologicalmodel thatdescribesthe tractionunder simpleslipin all

t_ threeregionsof operationfairlywellisthe J & T tractionmodel as presentedby
• , Johnsonand Tevaarwerk [9];

' 1 dT
(3-1) -- + F(T)--½

G dt

" The dissipativefunctionF(_)isopen to the choiceof the researcherto fitthe

•I observedtractionbut Johnsonand Tevaarwerk [9]found thatthe hyperbolicsine;

, (3-2) F(T) = sinh (_/Ts)
F]

1 where T s= non-hnear shearstressparameter.

describedallof theirexperimentalresultsin regions(A)and (B)very well. At

higherpressuresand for fluidswith hightractioncoefficientsthisdissipative

functionmay be replacedby the purelyplasticbehaviourof the material;
f

(3-3) F(T)= 0 for _<T c ; F(T)='_ fort = _C

where rc = limitingshearstrengthof the fluid.

I
l

Whether the perfectlyplasticbehaviourof the materialisintrinsicisnot clear.

Work by Johnsonand Greenwood [23]suggeststhat itispossiblythe resultof thermal

behaviour of the sinh model. For many applications the elastic/plastic traction i
model isadequate. Itwas used by Tevaarwerk end Johnson[24]and Tevaarwerk [14] I
to predict traction under various conditions of slip and spin. The analysis isl

' completelyisothermalinnatureand forsimpleslipthe tractionisgivenby;
• 2 S

i (3-4) J4 = _ [ tan-lS + i l'+ S =) ]I IT

i 2 Jl

,  ere s =
The shear strain rate in the fluid was taken to be the same everywhere in the

contact and assumed to be constant throughout the film thickness. Its magnitude was
taken to be;

AV
h

C. Equation (3-4) results from the integration of stresses, caused by the shearing
of an elastic element of pressure independent average shear modulus G, and the
plastic stresses proportional to the local Hertzlan pressure. The predicted traction

from an elastic/plastic model compares very well with the experimentally observed
values for combinations of slip and spin, provided that the spin or slip are not too

O large. Large slip or spin results in almost purely dissipative stresses over the

1985017537-023
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contact area and hence non-isothermal behaviour. Traction prediction under these

conditions is still possible but the thermal effects need to be brought into the

picture. Tevaarwerk [25],[16] presents two techniques for calculating such spin

tractioncurves. The lattertechnique requiresthe shape of the tractioncurve in

the large slipregime to provide a simple correctionto the isothermallypredicted

spintraction.

Isothermal tractionanalysiswas used in the reductionof tractiondata for the

firstreport on the resultsof the tractionmeasurement, Tevaarwerk [21].

3-2 THERMAL TRACTION ANALYSIS.

The abilityto separate the elasticstressesfrom the plasticones can now be used

to perform a thermal tractioncalculation.The analysispresented here follows the

technique outlinedby Tevaarwerk [17]and [26].

Equation (3-4)resultedfrom the integrationof isothermal elasticAnd plastic

stressesover the ccntact area of an ellipse.For the regionof contact under

elastic stress the shear energy is conserved and therefore does not give rise to

temperature increases. The plastically deforming region however, is non-conservative

and a temperature rise in the fluid is expected. This will lead to a reduction in

the local plastic strength of the fluid. Equation (3-4) may therefore be better

written in its elastic and plastic parts;
(

(3-5) J4 = J4p + J4 e

4S

(3-6) J4e = _(1+S')'
(-

2 S(S*-Z)

(3-7) J4p - _ [ tan-IS + (I+S')' ]

This modificationisgiven by TC/To where Tc isthe average

streu under thermal conditions and TO is the average stress under isothermal
conditions. We are dealing therefore with averaged stresses in the plastic region of

the contact even though the isothermal stress distribution is according to the

Hertzian pressure. This seemingly contradictory auumption is supported by
theoretical evidence by Tevaarwerk [25]. The modified equation would therefore be:

(3-8) J4 t = J4 e + Tc J4pto

The modification term TC/TOcan be found from a thermal balance over the

contact region under plastic stress. This region can be thought of as a thermal
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sourcewhose heat isconducted/convectedaway. The lengthof the sourceisa

functionof the locationof the onsetof plasticdeformationafterthe initial

elasticregion,however inthissimplemodel we willtake the sourcelengthto be

"a"where thisisthe semi contactlengthinthe runningdirection.As a simple

thermalbalancewe willuse the expressionreportedby Johnsonand Cameron [6]for

theshearplanetemperature;

h .5

(3-9) @c - eo = q _f_ [ .1 + v/Pc ]

where;

(3-10) Pe a_CsU _ks h_2- -
= ks (kf a) [-]

i
and q = average thermal strength of the source [W/m']

, 9c = shearplane temperature in the contact [°C]
i

4 @o = inlet temperatureof the fluid [°C]I

i kf = thermal conductivity of fluid in the contact [W/m°C]
h = central film th ckness in the contact [m]

ks = thermal conductivity of the roller material [W/m°C]
Cs = specific heat of the roller material [J/kg°C]

Ps = density of the roller material [kg/rn 3]

Thisexpressionisonlyvalidwhen the heat is conducted throughthe filmand

convected away by the discs,a conditionthatistruefor most tractiondrive

contacts. The strength q of the source is given by;

(3-11) q =_AU

In order to procee6 any further we need a relationship between temperature
and the shear strength of the fluid. A typical relationship that has its roots in

the Eyring theory of fluid transport is given by;

(3-13) T(@) = _ [ A + BP + (@+D) Ln ( )]

where ; A : viscosity temperature constant [°C]
B : pressure viscosity constant [°C/Pal
C ffi non-linear shear stress constant [°C/Pal

D = fluid soliJification tG_perature [°C]

E ffi fluid viscosity constant [Pa.sec]
P = pressure of the fluid in the contact [Pal

_C, At first sight it seems that this equation has five disposable constants in it,
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however two of these constants( A and D ) are cerived from the atmospheric

viscositytemperature relationship,and one more ( B ) ca1;be obtained from the Barus

viscositypressure relationship.The constant D is known as the solidification

temperature; the temperature to which the fluidshould be cooled to become solidlike

under atmospheric pressure. Only the constants C and E need to be determined

experimentally from the tractionresultsand thiswillbe done in the next chapter.

It should be noted here that the ultimate aim is to derive the fluidtrar'ion

parameters such that they apply for all the experimental conditionsreported here.

: In the next chapter a gradual development towards thisgoal willtake place.

By using equations (3-9),(3-10),(3-II)and (3-13) the average thermal shear

stresscan be obtained for a given set of conditions. In equation (3-8)we need the

ratio of the average contact shear stressunder thermal conditionsto that under

isothermal conditions.This is reallythe ratio of the shear stressgiven by ,,

_., equation (3-13)evaluated at the shearplane temperature @c ( from equation 3-9)
I

and the shear stressas evaluated at the inlettemperature conditionsi)o. The

ii other contact conditionsremain the same for thisratiocalculation.

, In order to verifythat the fluidin the tractioncontact behaves as indicatedby

equation (3-13)a slightlyrewritten form willbe used so that a straightline

-'_i relationship of the experimental results verifies the validity of the model (see sec
5-2).

!

i

!

C

.!

t
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4-0 CALCULATION OF THERMAL TRACTION CURVES.

A simple thermally'influenced tractioncurve can now t_ calculated from ecuation

(3-8),(3-9)and (3-13)provided of course that we have sufficientexperimental

parameters.

In almost allpracticalsituationsof contact_ under tractionthere isa de_ree of

sideslipand spin present. Tl_esecan influencethe tractionbehaviour rather

: strongly. We shallexamine an exact method of incorporatin[_the influenceof

sideslipand an approximate method of allowing for spin.

4-1 INFLUENCE OF SIDESLIP.

Sideslip is the slip of the two contact surfaces perpendicular to the rolling

velocity. It occurs mainly bec,_use of misalignment in a system or it can be due to a

sideways force. Its influence can be incorporated very simply by vectorial methods.

All the calculaUon techniques and thermal corrections thus far discussed apply.

Hence we may say that;

2 Jl _ 2 J2 _}
(4-I) J4 = ; J5 =

3 S/k 3 S ¢k

2 [ tan_iS + S
(4-2) , = _ I+S'----/]

Jl' J2=
(4-3) where S =2

+
l

3 k

Also equation (3-11) is modified to read;

(4-4) q =_]A Uz +A V=

The solution techniques remain exactly the same as before.

In the experiments as performed in this investigation all the results were

purposely taken under conditions of side slip so as to avoid the use of large motor

generator sets. As can be seen though the analysis is identical to the longitudinal

slip traction analysis and so the equations as shown in Chapter 3 are directly

applicable.

4-2 INFLUENCE OF SPIN.
(

Spin in a contact Is the result of the geometric configuration that makes up the

contact and the two cont=cting elements. _he influence of spin i,* not readily

implemented over the entire domain of spin, however there are some simplified

approximate solutions that can be applied.
q

_| _"
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. 4-2-1 iNFLUENCE OF SPIN IN THE LOW SLIP REGION.

When the an,buntof slipon a contactislow itispossiblethat we have an elastic/

plasticstressdistribution.The exactdistributiondepends on the combinationof
}

spinand slip.For smallvaluesof lopgitudinalslipthen thereare threeseparate

regionsof influencethatwe may consideras outlinedby Tevaarwerk and Johnson [24]

and shown inFig.4-I. This map isbased upon the influenceof spinon the 75% slip

tractionpoint.

!

10 ....
i

Ill:le,l_lO/PLioIS"II_WII'M_IN
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q

I
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Fig.4-I Regionsof influenceof spin.

These regionsare:

-" I) Traction can be predicted with an elastic/ plastic model without the influence

of spin

II) Traction is predicted with an elastic/ plastic model with the influence of spin

IIl) Traction is predicted with a rigid/plastic model with influence of spin.

Because of the influenceof elasticeffectsinregionI and IIitmight be

expectedthat thermalinfluenceissmallalso. In regionIIIallthe shearisof a

¢ dissipative nature and hence we would expect a thermal influence. Because the
, rigid/plasticanalysisisapplicable,asimplethermal correctionispossibleas

:: outlinedby Tevaarwerk [16].This correctiontechniqueisbased upon the concept

that equivalent shear plane temperatures give rise to identical fluid shear strength.

_ Hence by equating the amount of work done on the fluid due to spin to the amount of
_'_:C work in simpleslipwe can formulatea parameter calledthe "slideratio".This

_, ratio indicates the equivalent amount of simple slip that a contact has when under

slip and spin,

.; C
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The ratio is defined as;

AU J3
(4-5) --- = J4 + J6_

_U' Jl

(4-6) where _ U' = slipin the contact wit[,spin
4

(4-7) and AU = equivalentslipin the contact without spin

and may be calculatedfrom the rlgid/plasticanalysis. Fig.4-2shows the slide

ratioas a functionof the contact aspect ratioand the slipto spinratio.
q

i\
.l 1 lO

LIE TO71N MR'YIOJl/_

t

Fig.4-2Slideratioas a function of aspect ratioand slip/spinratio.

I
There isno exact analyticalexpressionfor these curves,however they can be

calculatedquite readily,see Tevaarwerk [14]. In order to predictthe with spin

traction we also need the traction results from the rigid/plastic analysis. These

curves are shown in Fig. 4-3 and can also be calculated quite readily.

The with spin traction can now be calculated quite simply by using Fig.4-3 to

obtain the slide ratio for a given slip and spin. After having obtained the

equivalent slip this quantity is now used in equations

C (3-5,3-6,3-7,3-8),(3-9),(3-II), and (3-13) to get the average thermally influenced

shear strength of the fluid. From this we calculate the traction coefficient. B

using Fig.4-3 find the dimensionless traction at the indicated slip/spin condition.

multiply by the traction coefficient just obtained to get the actual value of the
current traction coefficient.

"O
4-2-2 INFLUENCE OF SPIN IN THE REGION OF LARGE SLIP.

The essence of the argument for using the rigid/ plastic (and hence the simplified

O {
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thermal correction) analysis in Region IiI is that the entire stress distribution

:t consists of plastic stresses. In the above case it is caused by the large spin

component, however there is no difference if it is brought on by a rather large value

of slip and small values of spin. In fact any time that we are dealing with traction

in the thermal region one can apply the methods as for region III.
i

_.o81 //j
,_ o_'t /1 .,,! / _
:., /////
_,os . -4

i _.°3_ " :

{ 0, l0 lO0

i Fig.4-3 Spin tractioncurves as a functionof aspect ratioand slip/spinratio.
i

l ]

! i
4-2-3 THERMAL INFLUENCE OF SMALL SPIN. {

The thermal influenceof small spin valuesin the region of combined elasticand

plasticeffectscan also be included quite readilyif the tractioncalculation i

techniques as outlined by Tevaarwerk [14] are followed. It is merely required that

the plastic traction stresses are integrated due to slip and due to spin. From these

-i integrals an equivalent amount of slip can be calculated by the same methods as ,.,

outlined by Tevaarwerk [16]. This method is used in this report to calculate the

thermal small spin traction curves because the methods outlined in 4-2-1 would ignore
{

any elastic effects in the fluid. More information on this method will appear in a

ii ,o,o,. .i

I

a
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5-0 EXTRACTION DF THE TRACTION PARAMETERS.

In order to use the technique as outlinedabove for the predictionof traction

one does have to have the values of the thermal constants a,ldthose that govern the

initiallinearrange. We shalldeal with the extractionof the param_:tersfor the

two ranges separately.

5-I EXTRACTION OF THE SHEAR MODULUS PARAMETERS.

As discussedin chapter 3 the initiallinearslope on a tractioncurve can be the

resultof eithera viscousor an elasticresponse of the material in the contact to

the strainimplied. The parameter that determines the actual response is the

dimensionlessgrouping of the relaxationtime of the material in the contact and the

transittime of thismaterial through the contact. For a simple Maxwell type

material thisnumber isknown as the Deborah number and isgiven by;

nU
(5-1) De =

aG

C where q = viscosityof the fluidin the contact [Pa.sec]

U = transitvelocityof fluidin the cop_tact [m/sec]

a = semi contact length in rollingdirection [m]

G = shear modulus of the fluidin the contact [Pal

( Now under the assumptions of a simple pressure distributionaccording to Hertz, a

constant film thicknessin the contact and a constant shear moduh_,sover the contact

area the initialsmall strainbehaviour for the material willbe elasticif the

Deborah number islarger than l0 and willbe viscous in response ifthe Deborah

number islessthan .I . In between these two values the response is due to a mixed
t_ viscoelasticbehaviour.

Many assumptions have been made before arrivingat thispoint,however even with

more complicated analyses where the pressure is allowed to influencethe viscous and

elasticpropertiesitis found that the transitionpointsoccur at about the same

Deborah numbers. Also for the range of parameters normaliy encountered in traction

r drivesand testersthe Deborah number is such that the initialslope of the traction

curve is almost always governed by the elasticpropertiesof the material in the

contact. In the analysisof the data as performed here thisassumption is implicit.

5-I-I SHEAR MODULUS FOR CONSTANT PROPERTIES.

_' When the initial linear response is completely elastic it is quite easy to

calculate the value for the actual modulus that caused this slope, Under the

assumptions of constant properties throughout the contact this modulus can be

extracted from the initial slope using the following equation;

O ($-2) (3 = Trm _ [Pa]
4a

Q
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where m - initiallinearelasticslope [-]

Po = maximum Hertz pressurein the contact [Pal
h = filmthicknessinthe contact [m]

a = semi contactsizein the rollingdirection[m]

Thisequationisapplicableregardlessof whether the slopeismeasured under

longitudinalslipor undersideslip.

In AppendixIithe resultsof the slopesfrom the experimentsanalyzedfor modulus

are indicatedin the column labeledGB. Only the slopesfrom the spinfree

experimentswere analyzedforshearmodulus. These resultswere calculatedwith the

isothermalvalt,,,forthe him "hicl<nessas indicatedby H0 in thisAppendix. The

filmthicknessH0 was calculatedfrom the expressionforthe centralfilmthickness

as reportedby Hamrock and Dowson [32].In orderto modify the valueof th_ _hear

modulus to allowforinletshearheatingthe printedvalue,JpderGB shouldbe

mdltipliedby the valueof YI. Valuesfor YI were calculatedbasedupon the iplet

shearheatingtheoryof Wilsonand Murch [33].£
Examinationof theseresultsshows thatthereappearsto be very liLtleinfluence

of pressureon the modulus. Thisiscausedby the factthatsome of the slope

responseisdue to the creepcomplianceof the discsused to testthe tractionfluid. !

_- 5-1-2 SHEAR MODULUS WITH A SIMPLE COMPLIANCE CORRECTION. _)
One of the criticismsthatisoftenraisedat the above analysisisthatit

!

neglectsthe influenceof the diskcomplianceon the measured slope. Disk compliance

is the result of the elastic creepage of the disk material due to the tract.ve i
stresses on the surface. The traction response in the initial linear range is

( affected by this disk creepage in that it makes the slopes lower than if the discs
were infinitely stiff. An exact correction of the modulus for the disc compliance is
not possible at the moment. The analysis that is presented here is that due to -'
Johnsonand Roberts [8].

If we let m' be the slope of the traction curve for dry rolling bodies, then from
_- the addition of the compliances of the discs and the film a simple corrective term

for the shear modulus may be derived as shown in equation (5-3). From this
expression it is obvious that when the measured slope approaches the dry slope the
corrected value for the shear modulus tends to infinity.

m _
(5-3) = G (m' - m)

z

where Gc = simple compliance corrected modulus

=°

, ---'I =1=_
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The dry slopem' can be calculatedfrom the expressiongivenby Kalker[27]as;
t

: (5-4) m' = Gs [-1
"i Q Po
.!

where Gs = shear modulus of the disc material [Pa]
Q = Kalker coefficient [-1

The value of the Kalker coefficient depends on the aspect ratio of the contact and

the direction of slip. Below is a table which gives these values for the aspect

ratios and tests as reported here.

,i Table of Kalker Coefficients Q,.!

"I aspect ratio coefficient
k Q

' 1 .56

2 .70

5 .81

!

The fluidshearmodulusas calculatedby thismethod are indicatedin AppendixII

"] under the column GC. Again to modify thisresultfor inletshearheatingitshould

i{ be multiplied by the factor YI. From the results it may be observed that there is
now a definite increase in the modulus as the contact pressure increases,

5-1-3 SHEAR MODULUS WITH A COMPLEX MODULUS CORRECTION.

Some of the drawbackson the foregoinganalysisare thatwe are stillusingthe

complianceof the totalfilmand of the totaldiscsystem and then combiningthem for• a correction term. A much more detailed compliance correction was developed by

I Johnson, Nayak and Moore [28] . These compliance corrections were based on the fact

t that elastic effects can only occur at high enough pressures, so that for a normal
lubricated contact only a portion would be elastic in response, the remainder being

t viscous. Suitable charts for the correction term to be used with the simple modulus
l were presented for longitudinal slip and for an aspect ratio of 1 and a line contact.

In using this data here we should be aware that the tests presented here are obtained

under conditions of side slip only. The error introduced by this is expected to be
about 40% for the contact aspect ratios as used here and this is based upon the

L simple dry slope ratios from Kalker's theory.
Since the correction factors are reported in graphical form a more suitable method

based upon a correlation of the results will t)( Jsed here. It may be expected that

the new correction factors are an improved form of the 'simple correction term' as
|

_, used in the previous section so that the basic form of the expression can be
• O retained. From the shape of the curves this appears to be the case. By employing

simple shift correction factors the following equation can be derived;
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= G}2.25-1.25C' + (.25C'-.2)/k 1, (5-5) cj t 7 " [Pal

where C'= fraction of semi contact length under elastic response [-]
m = treasured slope [-1

m'= dry calculated slope [-1
f

Gj= fully corrected modulus [Pal
k = contact aspect ratio [-1

The fraction C' can be calculated from the assumption that no elastic effects

occur if the viscosity is less than .1 MPa.s. With the knowledge of the pressure

viscosity coefficient and assuming a Hertzian pressure distribution, C' can be

calculated from;

Ln [100000/ n({})]
(5-6) 1 - C '= =

t._ a (0) Po

where n(8) = alznosphericviscosity [Pa.sec]

a(0) = pressure viscosity coefficient [Pa-I]

( The fluid shear moduli calculated by this technique are listed in Appendix II
under the lable GJ. The value of C' is also indicated. Because of the nature of the

expressions in equation (5-5) it is possible to get a negative value for the shear

modulus from this analysis. When this was the case a zero value would be entered in

the data column. From the results it can b_, seen that the magnitude of the modulus

does increase but so does the amount of sct_tter. For the time being it is not
recommended to use this method of shear modulus correction.

5-1-4 COMPLEX CORRECTION WITH REDUCED PRESSURE EFFECTS.

As discussed in Chapter 3 the assumptions of Hertzian pressure distributions in
, the contact area do not hold when a fluid film is present. Due to the hydrodynamic

action the pressure distribution is more pesky. This will have an influence in the

calculation of the elastic region C as used in the foregoing analysis. To estimate

the influence of the reduced pressure the shear modulus was calculated along the
previous method but with the reduced pressure in equation (5-6). The reduced

pressure may be calculated from the pressure ratio as given below;

(5-7) Pr = 1 - 4 Ge-.25 YI"3 •(-2.3/k)

where Ge = Johnsons elasticity constant [-]

_- YI = Inlet shear heating factor [-]
k = aspect ratio (b/a) [-]

Pr = fraction of the theoretical Hertz pressure [-]

...... jl ,
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The reduced contact pressure is then the product of the Hertzian peak pressure times

the pressure ratio. The results including this effect are presented in Appendix II
in the column labled GP for the modulus and as CP for the semi elastic contact

length. Also the reduced film thickness due to inlet shear heating was used. As can

be seen from the resultsin Appendix IIthereisnot a significantchange in the

valueof C and CP and hence the influenceof reducedpressureisnot very strongon
; the modulus.

5-2 EXTRACTION OF TiiL LARGE STRAIN PARAMETERS.

The large slip region , that is the region beyond the traction peak, is

exclusively governed by the dissipative element in the theological equation. An the
elastic effects have completely disappeared so that it is now quite easy to extract
the governing parameters for this region. In essence what is required is a reverse

analysis of the traction calculation normally used for the calculation of the
traction curves. As we shall see only two parameters are truly required to fit this
large strain region.

r Of the five paramete.'s shown in equation (3-13) , two derive from the simple fit of

the atmospheric temperature viscosity data to the Vogels viscosity equation;

Am
(5-8) n(e) = v0 e (O+D)

t

The constant B comes from the description of the Barus pressure viscosity
relationship in the form;

BP

(5-9) 13=q (9) e (e+D)
(

This form can be directly derived from the Roelands equation for viscosity
pressure. Table 5-1 shows the viscosity constants as used for the two fluids tested,
together with the thermal parameters as used in (3-9) and (3-10). These constants

remained the same throughout the analysis and prediction of the data.
t

Santo50 TI3F-88 Uni ts

V0 1.69E-04 6.75E-05 [Pa. sec]

A 585 777 [°C]
' D 75 84 [ °C]

B 2.98E-00 2.98E-06 [ °C/Pa ]

ks 15 15 [W/r_PC]
kf .15 .15 [W/m°C]

Os 7800 7800 [kg/m3]C
Cs 500 500 [J/kg°C]

Table 5-1 Fluid and roller material constants used in the analysis.

O

W
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Itremainsthereforeto findthe constantsE and C. These can be derivedfrom the

thermalregionof the tractioncurve itselfby curve fittingequation(3-13)to it.

For thispurposeitisbetterto writethisequationin a slightlydifferentform;

= _ _ (27C E.(5-10) T I [ A + BP + Ln ]
0+D C e+D _)

For the temperature0 we willuse the shearplanetemperature0c as

calculatedby equation(3-9).From the above equationitisapparentthatifthis|
i

relationshipholdsthen the resultsfrom the tractionmeasurements shouldform a

: straightlinewhen plottedin the above fashion.The slopeof thislinereflectsthe

valueforC whilethe interceptisindicativeof the valuefor E.
In thes_calculationsthe shearstrainrateisconsideredto be constantover the

contactarea and throughoutthe thicknessof the film. Itsmagnitudeisgivenby;

_"= AU/h [sec -I]

where h = central filmthickness [m] :

The centralfilmthicknessiscalculatedfrom the expressionsby Hamrock and Dowson

i [32]. Further modifications to this film thickness to allow for inlet shear heating !

were made by using the Wilson and Murch [331 approach.

5-3 ANALYSIS OF THE EXPERIMENTAL RESULTS.

From the experimental traction data the curves as selected in Chapter 2 were analyzed

inthe above fashionand the resultsplottedin Fig.5-1 through5-6. For the t

,j remainderof the tractioncurvesthe resultingvaluesof E and C are shown in
i Appendix III under the columns E1,C1,R1 and E2,C2,R2. The difference between these _
il constants is that the suffix '1' denotes isothermal inlet conditions while suffix '2' _.

l denotes the results with inlet shear heating effects. In each case a best fit value i

of C and E were selected and the corresponding R values indicate the regression/

coefficient obtained, iIn order to reproduce the original traction curves we will need three separate and

distinct constants (G,E,C). However if the values of C2 and E2 are examined in 1

Figures 5-1 to 5-6, or in Appendix HI it can be observed that for a given fluid {

)|J ,- these parameters do not change mut... This suggest that more than one traction curve ,

can be analyzed in the above fashion t_ get Just one pair of values for a whole
family of traction curves.

5-3-1 MULTIPLE TRACTION CURVE REGRESSION.

O Multiple curve regressions were carried out for the groups of traction curves as •

shown in the report and the results are shown in Fig. 5-7 to 5-12. In each case it _-

may be observed that the fit is reasonable. An even better fit can be obtained if

those curves that have some asperity contact are left out. This was done for the
results as reported in Fig.5-13 and 5-14. These two figures include all the traction

@ tests for the two fluids as shown in Chapter 3 with the exception of those tests "

IV

I IIII ml|l _' _ .... _----- " t --._ll_pl
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where some asperity contact took place. As can be seen from these two figures the

¢ degreeof fitisremarkablygood ifwe remember the factthatthe tractiontestswere

taken undersuch varyingconditionsof speed,aspectratio,contactpressureand

inlettemperature.Thissuggestthatperhapsas few as two constantsare requiredto

describethe largestraintractionregionon a tractioncurve taken underany

condition,providedthatitisfullyflooded.For partiallyfloodedtractioncurves
!

a differentapproachwillbe used.

0
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6-0 TRACTION PREDICTION

We willnow turn to the predictionof the tractiontraces that we have analyzed so
t

far. There are several ways in which thiscan be done depending upon the source of

our data. Firstwe willcompare the theoreticaland experimental data based upon the

constantsas derived from the curves themselves. This serves to illustratethat the

general shape of the experimental tractzoncurves isadequately predicted by theory.

This willbe done for curves without and with spin.

Next we willrestrictthe p-edictiontechnique so that we willuse only constants

as fittedto a whole family of experimental traction traces. From the comparison of

predicted with the experimental resultswe should be able to ascertainthe validity

of the fact that the non-linear tractionconstants E and C are common to all the

tractioncurves and can therefore be thought of as being intrinsicto the fluid,at

leastfor a good range of the experimental conditions. Again non spin and spin

tractionresultswillbe examined.

Thirdly we willtake the effect of asperitytraction intoaccount. In order to do

that we requirethat the theoreticalpredictiontechnique be used to to correctly

¢: predictthe fluidtractionportionof the experimental data only.The difference

between the fluidportion and the experimentally observed tractionwillbe taken as

the tractiondue to asperitiesin contact.

6-I PREDICTION WITH INDIVIDUAL CONSTANTS.

c To see the accuracy of the predictiontechnique with the elastic�plasticthermal
i

method the firstway to predictthe tractiontraces isby using the very constants

that were derived from them. For each trace thismeans the three fluidparameters of

shear modulus, and the two parameters from the nonlinear thermal analysis. At this i
point it ispossibleto ignore the influenceof asperitytractionsince thishas gone

t into the constants that were obtained from the curves. To ignore this asperity
traction is not correct however for the sake of comparison the starved traces are

included here. Fig 6-1 and 6-2 show the experimental traction traces without

starvation and in Fig 6-3 and 6-4 compare the predicted traces (continues lines) with

the experimental results (symbols). These predictions are for the traces without

t spin. Fig 6-5 and 6-6 compare the theoretical traction traces with the experimental

data for contacts under spin. All these predictions are based upon individual

constants. The original experimental spin traction c Jrves are shown in Fig 2-16 and

2-17. Similarly Fig 6-11 and 6-12 show the experimental traction traces that include

some asperity contact. The comparisons between predicted and experimental traces for

" these are shown in Fig 6-13 and 6-14. The constants used in the prediction are

listed under the trace numbers in Appendix II and IIl.

From the comparison the prediction technique appears quite successful with good

fit in the initial traction regio,l and in the nonlinear region. At larger slip the

prediction of traction is above the experimental. The reason for this is thought to s

O be that the disc temperature in the experimental traces increases with increasing :

slip. In the theoretical predictions however it is kept constant. The experimental

traces will therefore show a lower traction than the theoretical. For further

clarification on the various predictions and curve numbers see Table 6-2.

O ,,

,. ..... _ ;- _.e,
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. 6-2 PREDICTION WITH MULTIPLE FITTED CONSTANTS.

; That the predictionsas described above give good predictionsis more or less

expected because otherwise there would be a seriousfault in the analysissomewhere.

: However based upon the multiple curve fitthat we did for the non-linearparameters

it istempting to use these for the theoreticalpredictions. This means that we

would only have two non-linear constants for the entiretraces as predicted in Fi_.

6-3 ,6-4,6-5 and 6-6. Also with thistechnique we can separate the asperity

tractionfrom the fluidtractionby predictingwhat the tractionfor the particular

conditionswould have been based upon the fluidtractiononly. Comparison with the

experimental traces allows us to separate the asperity tractionas a function of the

nun,oer of asperitiesin contact. The number of asperitiesin contact can be obtained

directlyfrom the voltage fraction from the experiments.

•, In order to use the theoreticalpredictiontechnique as outlined we willneed a

-{ relationshipfor the dependency of the shear modulus on temperature and pressure.

•:I For the range of variablesas shown in Fig 6-1 and 6-2 the modulus was fittedto the

i! followingexpression;

11i1 (6-1} For Santo50: Gc = .131 + .122 Po -.002 9o i(_a]

and TDF88 : Gc = .077 + .061 Po -.0007{}o [GPa]

Also the non-linearconstants were obtained frcm the curve fitshown in Fig. 5-13

I and 5-14. These constants are;

"t
(6-2) SantoS0 : E2 =1.3557E-06 C2=2.803E-05

TDF88 : E2 =1.1402E-06 C2=3. 108E-05

.! i
The comparison between experimental and predicted tractic _. traces shown in Fig. 6-7, ':

6-8, 6-9 and 6-10 were based on these constants only. The accuracy in the prediction

is very good especially if we consider that only two non-linear thermal and one

isothermal constant are used for the entire prediction of the traces. This proves

' that the elastic/plastic thermal model is in fact adequate as a traction model, i

Further improvements could be made if for example a Roelands type viscosity pressure J
t

relationship were used and if some thermal allowance were made for the increase in
the disc temperature with increasing slip. All ;n all though the prediction is very !

good keeping the simplicity of the model in mind. 1

6-3 THEORETICAL TRACTION PREDICTION WITH ASPERITY CONTACT.

So far we have only dealt with the fluid traction in the contact. We have

carefully selected traces that were free of asperity contact for our data prediction

However we know from the experimental results that asperity contact does occur under

O conditions of starvation where inadequate fluid is supplied to the inlet of the disc,

, or under conditions of high temperature and low speed where the film formation

_" capability of the fluid is insufficient. With the help of the prediction technique

for the fluid traction in the contact we can obtain the influence of the asperity

;e
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traction for a given asperity contact cor.dition.

The experimental traction curves that have varying degrees of asperity contact are

shown in Fig. 6-II and 6-12. The theoreticallypredicted traces by the method used

in section 6-2 are shown in Fig 6-15 and 6-16. These traces are for the pure fluid

tractiononly. Any difference between them and the experimental traces must be due

to the asperity traction. This difference can be obtained by superimposing one curve

on the other and measuring the average difference between the two traces. Itwould

be expected that only some average difference can be obtained in thisway. The table

below gives these averaged differencesfor the sets of traction traces.

Asperity, Traction for TDF88 Asperity Traction for SantoS0 !

Volt. Fract. Fz Asp. Tract. _,olt. Fract. Fz Asp. Tract. I

i (-> t (N) ' (-) l . !
1 +.75 600 13.5 .78 600 18.5 * "

•8 600 13.5 .68 600 II.9

: .8 600 10.4 .8_ 600 8.5

.i .91 600 6.1 .8f, 1200 18.6 *

•85 800 6.0 .6:) 1000 13.2

) .94 400 6.5 .9L_ 600 3.9
I

J .69 I000 9.3 * .94 400 3.4.85 400 4.5 i

Table 6-I: Asperity traction forces for the traction curves shown in Fig. 6-II and !

6-12. The items with a '*'were not included in the finalcorrelation.

Figures 6-21 a,b _.Iow show the results from this table in a more direct form. }
t

38- :311- i ';-

j " " i/ _ m • 0

p ,4) '4) a-e I

¢ ¢ Q 1

-°:s+" + °x_ i4.

+ ° +Z + '4)' 4,

| I.- I, I,-
I I °

_-.T ......... _ ............t : .+ .; -7 .z .: ; ;
¢1-V¢) :-: ¢1-V¢) C-'.

Fig 8-21a,b: Rehttionship between traction increase due to asperity contact and the

CJ contact fraction for TDF88 and SantoS0.

6-3-1 ANALYSIS OF THE ASPERITY TRACTION.

From the results in the table it can be seen that the amount of extra tract|on

resulting from the asperity contact is roughly proportional to the contact traction.

O
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This contact fractionisgiven by;

(6-3) Cf = I - VF

where VF = Voltage fractionof the film

This voltage fractionis measured for each experiment and isan indicationof the the

separationof the discs. The contact fractionCf isa directindicator of the

number of asperitiesthat are in contact. Leather et a] [29]si.owsthat the average

number of contact points isrelated to the contact fractionas follows;

(6-4) f = Cf / ( I - Cf)

when we are dealing with a rolling/slidingcircularcontact. At small ',aluesof

, Cf we see that the number of asperity contacts isdirectlyproportionalto the

contact fraction. Even at values of Cf = .2 the error in assuming linearityis

"!, only 25%The other point that we need to address is the relationshipbetween asperitiesin

contact and the tractionincrease that resultsfrom this. For the theory of asperity

t contact by Greenwood and Wil]iamson [30] the surface roughness is 9ssumed to be

} Gaussian in its height distribution and in its peak distribution. For .nis form of

: distribution they showed the followinff for the contact of asperities between dry
: surfaces;

i) the number of contacts is proportional to the load.

ii) the average contact area per asperity is load independent.

iii) the average pressure per asperity is load independent.
l

We will assume that conditions ii) and iii) hold even for lubrica¢¢_l contacts.

Condition i) is not applicable here because the load is not only carried by the

asperities but by the fluid film as well. We will however assume that all the load

is carried by the film so that the number of asperities in contact will have no

influence ,)n the locM pressure in tt_ contact. Even thougk "he averages of the

asperity contact pressure and the areas are constant for surfaces with Gaussian

roughness distribution it is possible that the larger contact areas predominate in

the traction response. Also the traction from the as4)eritles will depend e. l the

shear behaviour of the material at the asperities. This material could be some
t

traetlon fluid trapped under the asperity contact itself, form1.'tg a micro traction

contact, or it ¢ot_Id be some solid material such as some boundary "ubrieation

additive or perhaps even the disc material itself.

The implications of these two possibilities are quite different for s traction

contact and it is important for us to establish which mechanism predominates. The
0

two possible forms of asperity traction can be stated In the following two

hypotheses;

: 11 : the increase in tractlm, force is proportlon.d to the number of
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contactsor,

If): the increasein tractioncoefficient isproportionalto the number
_ of contacts.

We shall use the experimental oata to test the two hypotheses and establish which is

the more correct form to use, We can do this by fitting straight line relationships

to the actual asperity _L'action data and observing the degree of fit obtained. The

equations that will be used are as follows;

(6-5) forhypothesis I): Fy(asperity) = f * C3

,, ,, ., II): Fy(asperity)/Fz = f * C3

Testingthe two hypothesesollthe asperitytractiondata we obtainthe following
, results;

": Santo50 TDF88

' R= F C3 R= F C3

:'. For hypothesis I) : .39 4.5 25 .56 7.5 23

_[ For llypothesisII) : .41 4.8 .033 .2 1.5 .023

t
t

! Where R= isthesquareof the regressioncoefficientand F isnumericalvaluefor

'I the 'F'testusedinstatistics,see forexample Draperand Smith [31].Itisnot
!

I very clear from these values which of the hypotheses are correct. In both cases
however the degree of fit indicated is very low. This can be corrected somewhat by

=_ eliminatingsome outstandingdata points.After eliminatingthe pointsindicatedby

I a star(*)inTable6:1we obteinthe followingresults;

' Santo50 TDF88
R =

i F C3 R= F C3
For hypothesis I) : .89 43 24 .85 28 37i

: For hypothesis II) : .71 12 .028 .64 9 .055I
• I

_t:! The above values now clearly favour hypothesis I) over II). Furthermore the ;

_[ dependence of the asperity traction seems pretty nearly independent of the type of
fluid in the contact. This suggests that we are dealing with the traction due to
some common material in both cases such as an additive or perhaps even the disc

__ materials themselves. Lumping all the asperity traction data together results in the

_1 following values;Hypothesis I) : R= = .75 F=32 C3=25
Hypothesis II) : R= = .46 F=9 C3=.03

O
|

Again hypothesis I) is clearly more plausib}e than II). From this analysis the
dependence of asperity traction on the contt, ct fraction is given by;

O !.
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, (6-6) Fy(asperity)= (I-VF)/VF* 25 (N)

The overalldegreeof correlationbetween thisexpressionand the experimental

• _-esultsm_y be observedfrom Fig.6-22 .

Fxpression(6-6)can now be used inthe predictionof the tractioncurveswhich have

a significantamount o[ asperitycontactinthem. The asperitytractionshouldbe

_dded inas a propm'tionof the plastictraction,ie.when allthe tractionisdue to

complete plasticlikeslipin the contactthen the fullamount of asperitytraction
h

isadded in. On the otherhand when the contacttractionissolelydue to elastic
)

effectsthe factthatasperitiesare indirectcontactdoes not resultina higher

traction,.The reasonforthisisthat theinitialtractionslopeismostlydue to

the elasticcreepof the discmaterialand so the elasticdeformatiopof the

asperitiesin contactwould be the same a_ the remainderof the ,oilermaterialin

_ tilecontact.Not untilactualslidingof one asperitypastanotheroccurswillthe

•) effectof asperitycontactrevealitselfinan increasedtraction.Ip factitis
J
:; entirelyconceivablethatforvery roughsurfacesindry contactthe effectof

' asperitycontactisone whereby the initialelasticslopeislower than when the;.i

'I surfacesare smooth.
:.] Fig.6-17 to 6-20 compares the predictedwith the experimentaltractioncurveswith

_i the asperitytractionincluded.The agreement between theoryand experimentisvery

good in most cases,consideringthe rathersimplemodelingthatisused here. i

)
FIG_ SH3WING BASIC FIC_JRESSH3WING THE

EXPERIIVI_'rALDATA CI_ARISCIN WITH PREDI_.

Fig. Fluid Spin Starved Fi tied Fixed Including

• # neme /flooded Constants. Constants. asp. traction ,
i , mll ._

6-I TDF88 none flooded 6-3 6-7 N/A

6-2 Santo50 none flooded 6-4 6-8 N/A

2-16 TDF88 yes flooded * 6-5 6-9 6-19

2-17 Santo50 yes flooded * 6-6 6-10 6-20

6-11 TDF88 none starved 6-13 6-15 6-17

6-12 Santo50 none starved 6-14 6-16 6-18

• PartiaHy starved results

Table 6-2: Comprehensive overview of the figure numbers showing the experimental and
predicted data.

1 "• . )

!
_-|

t1_ I'I"
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7-0 CONCLUSION
i

Ultra high speed tractiontestswere pert .,nedon two tractionfluidscommonly

employed. The range of the testsvariableswere; contact pressure from 1 to 1.8

GPa, disc surface velocityfrom 50 to 120 m/sec, fluidinlettemperature from 50 to

i20 'C , contact spin from 0 to 1.5% and inletfluidsupply from fullyflooded to

fully3tarved. A totalsummary of allthe tractiontestsperformed may be found in

Appendix I. The resultingtractioncurves were reduced to three constants by using

the Johnson and Tevaarwerk isothermBl traction model coupled to a thermal correction

technique for large slipand spin results. The three constants are the elasticshear

modulus and two non linearthermal parameters and are reported in Appendix IIand

¢ I-'I.

Theoretical traction predictions were performed for a representative number of

curves that showed the influence of rolling velocity, of contact pressure and of

aspect ratio. To establish the accuracy of the thermal model the predictions were

performed with increasing levels of independence of experimentally determined

C parameters. In the finalresultingpredictiononly two non linearthermal parameters

were used for the predictionof 15 differenttractioncurves covering the entire

range of variablesas used in the investigation,with the exception of the influence

of asperitytraction. Comparison of these theoreticalcurves and corresponding

experimental tracesshow very good agreement, in support of the Johnson and

' Tevaarwerk modified thermal model.

The influence of asperity tractlon was extracted from the experimental curves with

starvation by predicting the traction under fully flooded conditions and using the

difference to predict the asperity traction as a function of the number of asperities

in contact. It was found that the amount of traction force per asperity in contact

' was pretty well independent of the traction contact conditions and also of the

traction fluid. Comparison between theoretically predicted traction curves including

the effect of asperity traction and e:-._erimental curves shows reasonabie agreement.

It is felt that the degree of success that is shown by the theoretical predictions

can be further improved upon by using the Roelands pressure viscosity equation and

( also by making allowance for the rising temperatures of the traction discs as slip

increases. This will introduce one more disposable constant for the fundamental

fluid traction data however it will result in an improved prediction of traction.

C

O ¢

o
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APPENDIX I SLMMARY OF THE TRACTION TEST I_TA.

The traction tests performed traderthis contract are s,mmnarized in this

Appendix. The nomenclature used is as follows;

Test # Number of the particular test (YYMMDD-##)

Po Maximum calculated Hertz contact stress (GPa)

B Uo Surface rolling velocity in linear region (m/sec)

To IMsc surface temperature in linear region ('C)

SP Angle of tilt for spin (')

6 VF No-contact voltage fraction (-)

RX Equivalent rolling radius of discs (ram)

RY Equivalent transverse radius of discs (mm)

8 e Curvature offset for RY (ram)

DS Dimensionless spin ( ab/U) (-) "
i

KK Contact aspect ratio (b/a) (-)

6 A Semi contact size in rolling direction (ram) [i

!MS Slope of curve in linear region (-)

MU Peak traction coefficient (-) '
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APPENDIX II SUMMARY OF THE MODULUS ANALYSIS DATA.

P

_he various shear moduli calculated from the experimental results are

summarized in this Appendix. Tne nomenclature used is as follows;

Test # Number of the particular test (YYMMDD-##)

O
Po Maximum calculated Hertz contact stress (GPa)

Uo Surface rolling velocity in linear region (m/sec)

To Disc surface temperature in linear region ('C)

i
VF No-contact voltage fraction (-)

KK Contact aspect ratio (b/a) (-) ,

MS Slope of curve in linear region (-) i
}

I# RG Regression coefficient on the slope (-) I

Wet to dry slope ratie (-)

Ho Isothermal film thickne&g (urn)

8 YI Inlet shear heating factor (-)

GB Fluid shear modulus without corrections (GPa)

. GC Modulus with simple comp" _nce corrections (GPa)

C' Effectivedimensionlesscontact radius (-)
I

GJ Modulus wlth complex compliance correctlons (GPa) I

PR Reduced pressure ratio (-)

CP As C above but with reduced pressure (-)

GP As GO above but with inlet shear heating

and reduced pressure taken into account (GPa)

i
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B APPEZ_qglXIII SLI_4ARY OF THERMAL HYPERBOLIC SINE ANALYSIS.

The various hyperbolic sine thermal constants calculated from the
experimental results are summarized in this Appendix. The nomenclature
used is as follows;

m Test # Number of the particular test (YYMMDD-##)

Po Maximum calculated Hertz contact stress (GPa)

Uo Surface rolling velocity in linear region (m/sec)

8 To Disc surface temperature in linear region ('C)

VF No-contact voltage fraction (-)

KK Contact aspect ratio (b/a) (-)

SP Dimensionless spin ( ab/U) (%)

Ho Isothermal film thickness (urn)

YI Inlet shear heating factor (-)

8
E1 Hyperbolic sine constant for intercept

using no inlet shearheatlng or reduced

pressure effects (Pa.s)

!
C1 Slope constant for the above ('C/Pa) ["

Al Slope regression coefficient for the above (-)

Pl Pseudo E_clet number for the above (-)

D

E2 Hyperbolic sine constant for intercept

using inlet shearheating and reduced

t pressure effects (Pa.s)

C2 Slope constant for the above ('CAPa)

R2 l_lression coefficient for the above (-)

P2 Psuedo 1_clet number for the above (-)

m'
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